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The hyperbolic heat-conduction equation is solved for  periodic boundary conditions of the 
second kind. The amplitude, phase, and damping factor  of the temperature  oscil lat ions 
turn out to depend on the relaxation t ime.  The possibili ty of determining the velocity of 
propagation of heat experimental ly is analyzed. 

The finite velocity of propagation of heat is taken into account in the hyperbolic heat-conduct ion equa- 
tion [1-3] and is given by 

v = V a / ~  (1) 

This formula  involves the thermal  diffusivity a, which is a typical macroscop ic  charac te r i s t i c  of a 
mater ia l ,  and the relaxation time ~-r, which is a microscopic  t ranspor t  equation, and it is far  f rom c lear  
a p r io r i  whether the quantity "r r introduced into it is to be identified with the microscopic  relaxation time 
( le t  us say, the time to establish local thermodynamic equilibrium), although these quantities are  c e r -  
tainly related, 

Therefore  it is c lea r  that the experimental  investigation of effects related to the finite velocity of 
propagation of heat is of fundamental importance.  It would enable us to obtain ve ry  valuable information 
on thermal  relaxation and on the relat ion of the microscopic  and macroscopic  cha rac t e r i s t i c s  of a material ,  
and would reveal  the deeper  nature of thermal  phenomena, 

The conditions under which one should expect a manifestat ion of these effects can be determined f rom 
the modified heat-conduct ion equation [1] 

0q _ ~  Ot = q  § ~ r _ _  (2) 
Ox c)~ 

These effects will be important  (in compar ison with the ordinary Four ie r  law) and observable  when 
the second t e rm on the r ight-hand side of Eq. (2) is comparable  with or l a rger  than the f irst ,  i.e., for  me-  
dia with long relaxation t imes,  e.g. raref ied gases,  or for large heating or  cooling ra tes .  If the medium 
under investigation is a solid it is meaningful to speak of the second case.  Therefore  it is of in teres t  to 
examine the solution of the hyperbolic heat-conduction equation for  large values of aq/8-r. This can be 
real ized in pract ice  by employing an intense laser  beam whose intensity is modulated with a ra ther  high 
frequency.  The periodic component of the radiant flux ensures  a large value of 0q/3~'. 

J 

Let us consider  the idealized case of a semibounded space and a pure harmonic  t ime dependence of 
the heat flux 

q = qo cos (r q)). (3) 

The mathemat ical  formulat ion of the problem is the following: 

O~t O2t ~ . 

Ot__§ ~ r _ _  = a - - ,  x ~ O ,  ~ > 0 ;  (4) 
O~ O~ 2 Ox ~ 
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Fig .  1. Contour  fo r  eva lu-  
a t ing the i n v e r s e  Lap lace  
t r a n s f o r m  of a funct ion h a v -  
ing b r a n c h  points  at s = 0 
and s =oo. 

where  

Ot (0, ~) 
Ox 

qo 
V-1 + r [cos r cos (q~ - -  *) + sin m" sin (q~ - -  4)1; (5) 

Ot (co, ~) 0; (6) 
Ox 

Or(x, 0) = 0 ;  (7) 
0"r 

t (x, o) = o; (8) 

4 = arctg o~ r (9) 

Boundary  condi t ion  (5) is taken in this f o r m  on the bas i s  of  Eq .  (2); 
as  T r - -  0 this  condi t ion  goes  o v e r  into the usua l  e x p r e s s i o n  

at (0, z )  = _ 5 _  (10) 
ox x 

Taking the Lap lace  t r a n s f o r m  with r e s p e c t  to the t ime and omi t t ing  
the in t e rmed ia t e  ca lcu la t ions  we obtain fo r  the t r a n s f o r m  

T (x, s) = q0 V a  1/ s cos (q~ - -  4) + o sin (q~ - -  4) 

[ ( r  • .exp -- s2 + s - -  - -  x . ( 1 1 )  .r S T~ s 2 + ~--~ 

Using a table of t r a n s f o r m s  [4] and the Bore l  f o r m u l a  (the convolut ion theorem)  we obtain the solut ion 
of  the or ig ina l  p r o b l e m  (4)-(8) in the f o r m  

t(x, ~ ) = 0  for 0 < T ~ - l : r  = X / ~  ; 

2q0vxr , ,  4) 

exp z - -  ~] ) Io 

~3 

for T ~ T d. 

V (~ - -  ~l) 2 - -  ~ ) d~l (12) 
2T r 

It should be noted, however ,  that  the solut ion in the f o r m  (12) is inconvenient  fo r  ana lys i s .  It in-  
c ludes  both the t r ans ien t  and the s t e a d y - s t a t e  p a r t s  of the p r o c e s s ,  and they cannot  be s epa ra t ed .  T h e r e -  
fo re  we t r y  to find a solut ion in a second  f o r m  by s t a r t i ng  d i r e c t l y  f r o m  the i nve r s ion  t h e o r e m  and us ing  
the theo ry  of  r e s i d u e s .  The  t r a n s f o r m  (11) sa t i s f i e s  all the condi t ions  of the i nve r s ion  t h e o r e m  and p e r -  
m i t s  the se l ec t ion  of a s ing le -va lued  b ranch .  It  has  two s imple  poles  at s = • and b r anch  points  at  s 
= 0 and s = % The  contour  of i n t eg ra t ion  is shown in Fig .  1. 

We have 
2 

2hi X Res [T (x, s) exp (s~); 
k = l  

where  C = C O + C~I + C I + C o + CII + C ~  (ef. Fig.  1). 

Af te r  finding the r e s i d u e s  the le f t -hand  side of  Eq.  (13) b e c o m e s  

+ ir : ~ T (x, s) exp (s~) ds, (13) 
C 

2 

Z R e s I T ( x ,  s) exp(sz); ___io~] q ~  V I +  22 - -  (0 T r 
�9 2~V~r 
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exp [ - -  i (03t - -  q~ ,-]- %b)-- V/-~-~- ~ - -  r i - 
x 

V/._r ~ t r 

Let  us  c o n s i d e r  the  r i g h t - h a n d  s ide  of (13). 

~ [ x exp i ( 0 3 " ~ - - q ~ + ~ ) - - . i /  ~ + i - - x  
qTt tr  q- r 

V --(o ~ + i  - -  
tr 

If the  r a d i u s  of the l a r g e r  c i r c l e  t ends  to in f in i ty  R ~ r 

�9 (14) 

by 

J o r d a n ' s  l e m m a  the i n t e g r a l s  ~ T(x,  s )exp  (s~')ds and .[ T(x,  s )exp  (s~')ds v a n i s h  as  p ~ 0; the i n t e g r a l  

f T(x,  s ) e x p ( s r ) d s  a l s o  v a n i s h e s .  On the con tou r  C I we take  s = r exp(irr) ,  and on CII = s  = r e x p ( - i T r ) .  
C O 

In the  l i m i t  a s  R - -  oo and p ~ 0, t ak ing  account  of the v a l u e  of the s q u a r e  roo t  ~/s 2 + s / n - r ,  the  i n t e g r a l s  
a long  C I and CII can  be w r i t t e n  in the  f o r m  

S T (x, s) exp (st) ds + ~ r (x, s) exp (st) ds = 2q~ ] /  

i --rcos(qo---~)+cosin(q~--~) cos x ~ - -  r 2 _ -  
, ~r exp ( - -  rT) dr. (15) 

X " r 2 + co 2 ~ /  
0 t- 2 __ __r ' 

V Tr 

E q u a t i o n  (14) g i v e s  the s t e a d y - s t a t e  s o l u t i o n  of the p r o b l e m ,  and (15) the  t r a n s i e n t  b e h a v i o r .  It i s  
c l e a r  d i r e c t l y  tha t  (15) v a n i s h e s  a s  ~- ~ ~o. 

Thus  s u b s t i t u t i n g  (14) and (15) in to  (13) and l e t t i ng  R - -  co and p --* 0 we o b t a i n  the  s o l u t i o n  of  the  
p r o b l e m  (4)-(8) :  

p+io~ 

1 f" T (x, s) exp (st) ds 
t(~, ~)= 2~i- t /  

p--ioo 

qo I / a  1 / - 1 ~ , ~  / " t r  '/ 
Tp 

+ 
exp i (~t - -  ~ + ~) - -  x V - -  032+ i .~---~-- 

tf 

__ __ " __ exp( - -  r'c) dr . 
. r 2 -~- oJ 2 I 1 / / / -  l 2 r 
0 t f  

(16) 

Let  us  c o n s i d e r  the s t e a d y - s t a t e  p a r t  of  the  so lu t i on  

,r--Va : V ~  exp i ( ~ t -  ~ + , )  - x I /  _ ~2 _ i 
qo Tr (x, T) 

t r 

[ ]] exp i (cot - -  r + ~) - -  x - -  r 2 -t- i 
- T r  . 

Tr 

It  i s  c l e a r  tha t  the s e c o n d  t e r m  in (17) i s  the c o m p l e x  con juga te  of the  f i r s t .  A f t e r  s e p a r a t i n g  the 
r e a l  and i m a g i n a r y  p a r t s  in both t e r m s  we ob t a in  the f ina l  e x p r e s s i o n  fo r  the  s t e a d y - s t a t e  p r o c e s s  

(17) 
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As ~r ~ 0 

t l ( x , ~ ) _  qoVa ~ / l + o 2 T ~ e x p [ _ V  o ] 

[ V ~ ] • o ~ - q 0 - a r c t g ( - C 0 ~ r + V l + o 2 z 2 r ) -  -~-(o~r +g'lq-c0e~2r)x �9 ( i s )  

( )~ ] /~--  exp - -  x ~ cos = - x V (19) 

which agrees with the solution of the parabolic heat-conduction equation with a similar boundary condition 
[5]. 

�9 2 it is seen from (5) that we obtain the solution of the If we set r = 0 in (18) and divide it by ~/1 + r162 r 
hyperbolic heat-conduction equation for the usual boundary conditions (10): 

t(x, ~) = q V a ?  exp - -  (--  + V f  + ~o2-~.)x 
Z, I f~  - 1 + ~o~ 

I / r (O~r+] / l+o2~2r )x  ] " (20) • o~--rp--arctg(o 'c  r + ] / 1  +o2~r 2) - - 1  2 a  

A compar i son  of Eqs .  (18) or  (20) with (19) shows that taking account of the finite veloci ty  of p ropaga -  
tion of heat  leads to changes in the ampli tude and phase of the t e m p e r a t u r e  osci l la t ions  in a med ium and on 
i ts  sur face .  The damping fac tor  of the t e m p e r a t u r e  osci l la t ions  is changed a lso .  

As the f requency i n c r e a s e s  the damping inc rea se s  m o r e  slowly than in the solution of the parabol ic  
equation. It is pa r t i cu la r ly  in teres t ing that as w ~ oo the damping fac tor  does not tend to oo but to the finite 
value 

1 
k , (21) 

as is e a sy  to show by calculat ing the l imit  of the exponential  in (18). 

It is in teres t ing also that as the f requency inc reases ,  the ampli tude of the t e m p e r a t u r e  osci l la t ions 
does not approach ze ro  as in (19). For  example ,  as co - -  o~ the ampli tude of the t e m p e r a t u r e  osci l la t ions 
of the su r face  (x = 0) is seen  f r o m  (18) to be 

A-- qoVa V ~  r (22) 

This  last  r e s u l t  is a consequence of the boundary condition (5); in (20) the ampli tude tends to ze ro  as 
03 --~o% 

The effects  obtained a re  not unexpected f rom the physica l  point of view. Thus it is c l ea r  physical ly  
that for  l a rge  values  of the re laxat ion  t ime the t r anspor t  of the rmal  exci tat ion inside the body will be slowed 
down; this leads to an inc rease  in the ampli tude of the t e m p e r a t u r e  osci l la t ions on the su r face  for  per iodic  
heat ing.  As ~-r - -  ~ the veloci ty  of propagat ion of heat  tends to ze ro  and the incoming energy pi les  up at the 
su r face  of the body and the ampli tude of the t e m p e r a t u r e  osci l la t ions mus t  consequently inc rease  without 
bound. This  resul t ,  incidently, shows that in solving the hyperbol ic  heat -conduct ion equation the boundary 
condition must  be taken in the fo rm (5). 

The effect  of the finite veloci ty  of propagat ion of heat  on the amplitude, damping factor ,  and phase of 
the t e m p e r a t u r e  osci l la t ions  can be used to de te rmine  the veloci ty  or  the re laxat ion t ime exper imenta l ly .  
One poss ib le  method cons is t s  in invest igat ing and recording  the the rmoacous t ic  effect .  It is known [6] that 
a per iodic  t e m p e r a t u r e  dis t r ibut ion will produce the rma l  s t r e s s e s  which in turn genera te  e las t ic  v ibra t ions  
in the body under  study. The ampli tude and phase of these v ibra t ions  will obviously be re la ted  to the a m -  
plitude, phase,  and damping fac tor  of the t e m p e r a t u r e  osci l la t ions .  The e las t ic  v ibra t ions  will propagate  
in the body and can be rece ived  and recorded .  

If a per iodic  t he rma l  flux is supplied locally, for  example ,  in the f o r m  of a c i r cu l a r  spot f rom a 
l a se r  beam,  then in addition to volume osci l la t ions Rayleigh sur face  waves [7] a r e  produced and propagate  
f r o m  the spot.  These  waves also can be rece ived  and recorded .  The p a r a m e t e r s  of the the rmoe las t i c  
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osci l la t ions can be calcula ted r igorous ly  f r o m  the solution of the the rmoacous t ic  equations;  this is an in-  
dependent p r o b l e m .  
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NOTATION 

is the veloci ty  of propagat ion  of heat;  
is  the t he rm a l  diffusivity;  
is the t he rm a l  conductivity;  
is  the re laxat ion  t ime;  
is the delay t ime;  
~s the specif ic  heat  flux incident on the sur face  of the body; 
~s the angular  f requency of osci l la t ions;  
m the initial  phase  of the osci l la t ions;  
~s the ze ro  o rde r  B es s e l  function of imaginary  a rgument .  
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